New Metal-Rich Compounds NblrSi, NblrGe, and TalrSi - Synthesis, Structure, and Magnetic Properties

نویسندگان

  • Ratikanta Mishra
  • Rainer Pöttgen
  • Gunter Kotzyba
چکیده

The metal-rich intermetallic compounds NblrSi, NblrGe, and TalrSi were synthesized by arc-melting of the elements and subsequent annealing in glassy carbon crucibles in a high-frequency furnace. The three compounds were investigated by X-ray diffraction on powders and single crystals: TiNiSi type, Pnma, a = 641.27(3), b = 379.48(2), c = 727.70(3) pm, wR2 = 0.0773, 430 F 2 values for NblrSi, a = 645.48(3), b = 389.21(2), c = 741.11(4) pm, wR2 = 0.0981, 297 F 2 values for NblrGe, and a = 638.11(3), b = 378.69(2), c = 726.78(3) pm, wR2 = 0.0887, 290 F 2 values for TalrSi with 20 variables for each refinement. The iridium and silicon (germanium) atoms form a three-dimensional network of puckered IrjSi3 and Ir3Ge3 hexagons in which the niobium (tantalum) atoms fill larger cages. Magnetic susceptibility measurements on NblrSi and TalrSi indicate Pauli paramagnetism with room temperature susceptibilities of 0.30(5)-10~9 and 0.97(5)-10-9 m3/mol, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application

In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...

متن کامل

An Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application

In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...

متن کامل

First Principle Study of MC (M= Al, Ga, and In) at Equilibrium and under Negative Stress

The electronic and magnetic properties of the hypothetical compounds of MC (M=Al, Ga and In) are investigated by using first-principle calculations and pseudopotential plane wave self-consistent field method based on density functional theory. In order to find the most stable phase of MC (M=Al, Ga and In), we study them in zinc-blende (ZB), rocksalt (RS), wurtzite and NiAs crystal structures. W...

متن کامل

Synthesis, Spectroscopy and Magnetism of Alkoxobridged Dinuclear Copper(II) Complexes with 2  Amino  Picolines as the Ligands

The synthesis, spectroscopic and magnetic characterization of a series of new alkoxo-bridged binuclear copper (II) compounds are described. All complexes have the general formula [Cu (m-OR)(L)2]2(ClO4)2 · x H2O, in which m-OR = CH3O-, C2H5O- or C3H7O-<e...

متن کامل

Effects of Calcination Temperature on the Synthesis, Chemical Structure, and Magnetic Properties of Nano Crystallites Zinc Ferrite Prepared by Combination of Sol-Gel Auto-Combustion and Ultrasonic Irradiation Techniques

Nanocomposite zinc ferrites were synthesized using glycine-nitrates by sol–gel auto-combustion technique. The influence of calcination temperatures varying from 400 to 900°C on structural and magnetic properties of spinel ZnFe2O4 powders have been investigated. The characterization measurements including X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetomet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013